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1. Introduction 

The characterization of the harmonic scattering response of circuit-component-loaded scatterers 

is an important problem in both sensing and electromagnetic interference applications. A circuit-

component-loaded scatterer is defined herein as a scatterer that contains circuit lumped-elements 

(e.g., resistors, inductors, capacitors) and/or radio frequency (RF) components (e.g., transmission 

lines, antennas, distributed filters, amplifiers) within its structure. In contrast to the standard 

radar scattering problem, which necessitates the analysis of the radio responses of objects solely 

based on their dielectric compositions and physical geometries—and which has been thoroughly 

treated by numerous studies, the generalized scattering characterization of circuit-component-

loaded objects has thus far garnered relatively less attention in open literature—the interesting 

applications to which this research area can be applied notwithstanding. From the sensing 

perspective, a circuit-component-loaded scatterer—when properly excited—could potentially re-

radiate unique features, enabling it to be differentiated from an ordinary scatterer: for example, 

the antenna and filter at the front-end of an RF device can modulate the radar backscattering 

response, facilitating opportunities for classification and detection; the nonlinear components 

within the scatterer can also generate harmonic signals and re-emission, which can be exploited 

to extract the object embedded in linear clutter. As related to the design of communication 

systems, circuit-element modulated scattering plays a role in understanding how inter-coupling 

effects among different radios influence transceiver performance and signal fidelity. In all the 

aforementioned applications, an end-to-end (or transmitter terminal-to-receiver terminal), 

system-level simulation capability is needed to attain a fundamental understanding of the signal 

interactions. Accordingly, in this study, a systematic strategy for analyzing the linear and 

nonlinear responses of the circuit-component-loaded scatterer is developed, with specific 

relevance to active RF sensing, detection, and localization. 

The formidable scope of the current problem inherently spans both the electromagnetic and 

circuit domains, and a full-wave analysis strategy must track the signals or waves across a 

multiscale simulation domain consisting of effects occurring at the propagation, RF component, 

and circuit levels. As shown in figures 1 and 2, in the external problem, the propagation and 

scattering interactions of the radiation (or current) sources with the environment determine the 

incident fields at the scatterer as well as the re-radiated fields subsequently received at the 

receiver. In the internal problem, the coupling of energy into the scatterer and the generation of 

harmonics are complicated functions of the circuit elements and RF components. Full-wave 

electromagnetic solvers—for instance, the method-of-moments (MoM) and finite-difference 

time-domain (FDTD)—can be used to characterize RF components such as antennas and 

distributed filters. The treatment of active, passive, linear, and nonlinear lumped-elements also 

has been considered in the FDTD framework (1–4). In reference 5, a harmonic balance 

procedure—in conjunction with MoM—is proposed to analyze the radar cross section of simple 
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wire scatterers with nonlinear loads. To predict the microwave nonlinear behaviors of high 

temperature superconducting filters, an iterative MoM approach is developed in reference 6: the 

linear response is calculated in the frequency domain using the electric field integral equation 

and the nonlinear one is solved in the time domain. Works of direct relevance to RF transceiver 

design also have been undertaken by various researchers: the scattering of antennas connected to 

nonlinear loads is addressed in 7–17; harmonic generation by reactively-tunable antennas is 

investigated via a full-wave approach in 18 as well as a mixture of full-wave and equivalent-

circuit methods in 19. As related to electromagnetic inference and compatibility studies, the 

prediction of emissions from printed circuit boards (PCBs) using numerical methods (e.g., partial 

element equivalent circuit method, finite integration technique, FDTD) has been discussed in 

works by, for example, 20–23—albeit the focus of these studies is not on nonlinear effects. As 

alluded to above, although there exists a panoply of works—in both the electromagnetic and 

circuit domains—that are potentially applicable, either directly or indirectly, to the treatment of 

loaded scatterers, a complete system-level analysis of the harmonic scattering problem—that is, 

the tracing of the signal interaction from the transmitter terminal, across an environment, into an 

RF circuit network, and back to the receiver—has not been considered in detail. 

 

Figure 1.  Standoff sensing of circuit-component-loaded scatterer buried in the ground. 
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Figure 2.  Standoff, through-wall sensing of circuit-component-loaded scatterer.   

(A flat roof structure is assumed but not shown.) 

In view of the current lack of a comprehensive, generalized solver for studying the stated 

multiscale radar scattering effects, a hybrid simulation approach is presented in this work—with 

an emphasis on the characterization of the scattering properties of circuit-component-loaded 

scatterers in complex environments. The framework of the analysis involves a combination of 

electromagnetic and circuit simulations: the linear (or ordinary) response is determined in the 

electromagnetic domain, whereas the nonlinear response is deduced by computing the currents 

and voltages of an equivalent circuit network in a Simulation Program with Integrated Circuit 

Emphasis (SPICE) solver, and the interaction of the electromagnetic fields at the propagation 

level is characterized by asymptotic techniques. The study is organized as follows: in section 2, 

the development of the individual components of the simulation framework is detailed; in section 

3, the application of the solver is illustrated for two practical scenarios of interest—viz., in the 

first case, the scatterer is in the presence of a dielectric ground; in the second case, the scatterer is 

in a room environment; and in section 4, a summary of the work is presented. 

2. Formulation of Hybrid Simulation Framework 

The linear and nonlinear responses of a circuit-component-loaded structure (excited by a time-

harmonic field) are calculated with a solution approach encompassing both the electromagnetic 

and circuit domains. As depicted in figure 3, the solver is separable into the following five steps:   
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1.  The S-parameters and the current densities of the individual RF components (antennas, 

distributed filters, PCB structure, etc.) are characterized using a full-wave approach—in 

this case, a MoM solver is employed. The initial incident field at the scatterer is deduced by 

applying an asymptotic field propagator to the radiation source (or transmitting antenna). 

Note that to accomplish this step, the nonlinear circuit elements first have to be extracted 

from the circuit, and—for the calculation of the current densities—the RF components 

must be terminated with appropriate loads as determined by the actual circuit layout.  

2. Using the electromagnetic simulation results, wideband equivalent circuit sub-networks are 

synthesized for the RF components. These equivalent sub-networks are combined with the 

extracted nonlinear components (and other lumped and discrete elements) from the original 

circuit layout to form an overall equivalent network representation for the RF structure.  

3. The stimulus (voltage or current source) for the derived equivalent network is calculated 

based on the linear electromagnetic response of the scatterer.  

4. The equivalent network is placed in a SPICE solver, and simulation is performed to obtain 

the effective radiated power at all the harmonics of interest.  

5. Finally, the re-radiation for each spectral component is propagated to the receiver location 

using asymptotic routines. It should be mentioned that the first-order solution (for the 

fundamental frequency scattering response) can be approximated by applying steps 1 and 5 

only—specifically, a linear MoM approach can be used to simulate the entire RF structure, 

with the discrete circuit elements appearing only as equivalent impedance loads at the 

structure ports.    

 

Figure 3. Framework of hybrid solver. 
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The development of the major components of the simulation methodology is discussed below. 

2.1 Electromagnetic Solver 

The linear MoM algorithm for calculating the RF response of a structure is based on an approach 

originally established by Liao (24) for analyzing grounded antenna performance. The details of 

the electromagnetic solver are described below; for further explanations, the interested reader is 

referred to references 24 and 25. 

2.1.1 MPIE-MoM 

To calculate the radiating and induced currents of the RF structure, a MoM procedure is solved 

through the use of a standard form of the electric field integral equation. For an arbitrary field 

impinging upon a perfectly conducting structure, the mixed potential integral equation (MPIE), 

in terms of vector potential A


 and scalar potential  , is given by the following: 

       ,0)()(ˆ  rrErEn scatinc


structure surface s; (1) 
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The dyadic and scalar Green’s functions have been derived (26–28) for the case when the region 

of interest is, for example, the upper medium of a half-space: 
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In the above expressions, the quantities denoted by subscripts “fs” and “i” correspond to free 

space and image components, respectively. The Sommerfeld integrals (I’s) needed to complete 

equations 5 and 6 are defined in references 24 and 25. A set of expressions similar to 

equations 5–10 can be derived for the case when the region of interest is the lower medium of the 

half-space, or when the propagation background is a multi-layered (horizontally stratified) 

medium. 

After meshing the structure of interest with triangular facets, by expanding the unknown surface 

current density 
sJ


 as a summation of Rao-Wilton-Glisson basis functions (29, 30) and then 

testing equation 1 with the same type of functions, a matrix equation is formed, enabling the 

calculation of the surface current distribution throughout the structure. A procedure similar to the 

one shown in reference 29 can be used for setting up the matrix equation; and, with the 

introduction of normalized area coordinates, the face-pair combination evaluation can be 

implemented to speed up the impedance matrix filling process by eliminating redundant 

computational routines inherent in the edge-pair combination evaluation. For a voltage-source 

excited structure, a delta-gap model is assumed for the excitation vector in the matrix equation; 

in this model, an incident field only exists over the triangular patches spanning the gap location. 

For a more general incident field, the value of the incident field is assumed to be constant over 

each patch and equal to its value at the patch’s centroid. 

2.1.2 Approximation for Green’s Functions 

Note that two primary difficulties are encountered when calculating the impedance matrix 

elements using equations 5 and 6. One is due to the singularities that would emerge in the 

expressions gfs, gi, gxz, and gyz for certain impedance elements; however, singularity extraction 

techniques have been used successfully in obtaining closed-form solutions to the so-called self-

terms (31–33). Also, a quadrature routine can be employed in computing the elements containing 

gxz and gyz, even in the presence of singularities. The second difficulty concerns the calculation of 

the impedance matrix elements in the presence of the Sommerfeld integrals. Implementing an 

exact routine to calculate the impedance matrix elements would necessitate the evaluation of a 

triple integral. To expedite the matrix filling process, different common schemes are available in 

efficiently calculating the Sommerfeld integrals—either by speeding up the convergence rate of 

the integrals or approximating the integrals with closed-form expressions. Since the Sommerfeld 

integrals are slowly convergent (especially for small (z + z’)) along the original path on the real-

axis, a deformed path (e.g., steepest descent path) can be exploited to achieve faster 

convergence. To avoid repeated calculation of the same integrals, another class of methods uses 
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a pre-compute/tabulate/interpolate routine in which the values of the integrals at a finite number 

of sampled spatial locations are calculated in advance (using convergence acceleration 

techniques) and then are stored in a database to serve as a base set for interpolation by the MoM 

procedure. In this study, the method of discrete complex images is employed to approximate all 

the Sommerfeld integrals with closed-form analytical expressions; thus, by eliminating the 

innermost of the triple integral, the remaining double integral can be carried out readily using a 

standard quadrature algorithm. After mapping the integrands as a sum of N exponentials of the 

form 



N

v

jk

v
voze

1

 on the complex koz-plane using the generalized pencil of function method (34–

37), either of the following two identities is applied in approximating the resulting simplified 

Sommerfeld integrals in canonical forms: 
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Following the recipe given above, the five Sommerfeld integrals of interest have been 

approximated with an error of less than 1% in this study. In a particular propagation medium, 

each set of complex images is only valid in a particular spatial and spectral domain—in other 

words, each set affords accurate estimation only over a limited range of ρ, (z + z’), and 

frequency. (Formally, unlike that of equation 11, the right side of equation 12 is not in the proper 

form to be labeled as a “complex image” contribution; nonetheless, the name “method of discrete 

images” is adopted here when referring to this technique.)  

In examining equations 5 and 6, it can be seen that for a structure supporting purely horizontal 

currents (e.g., distributed filter), only two Sommerfeld integrals are needed in setting up the 

matrix equation. Furthermore, for a general three-dimensional (3-D) structure, it has been 

observed that the non-diagonal components (i.e., the directionally mixed response terms A

xzG , A

zxG , 

A

yzG , and A

zyG ) of the dyadic Green’s function have only minor contributions to the total impedance 

matrix.  

2.2 Wideband Lumped-element Equivalent Circuit Synthesis 

RF components such as transmission lines, antennas, and distributed filters are translated into 

equivalent circuits for subsequent simulation in a SPICE solver. The multi-port S-parameters of 

the structures are first obtained with the MoM technique and then transformed into Y-parameters. 

The frequency-domain transfer function—that is, in this case, the function representing the 

admittance parameter, YEM(s)—for each component can be expanded as a rational approximation 

of the form 
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    



i i

i
EM sed

ps

r
sY , (13) 

where s = jω is the complex frequency; ri and pi are the residues and poles, respectively; and d, e 

are constants. Note that ri and pi appear as either pure real numbers or complex conjugate pairs. 

After the unknown parameters in equation 13 are estimated with the two-stage vector fitting 

approach outlined by Gustavsen (38–41), a wideband equivalent circuit network for the RF 

component is synthesized by converting each term within equation 13 into a lumped-element 

circuit using the procedure prescribed in reference 42. 

2.3 Circuit Simulation 

The response of the overall equivalent network for the RF structure—consisting of the wideband 

lumped-element sub-circuits derived in section 2.2 and the extracted nonlinear components—is 

simulated in a SPICE solver. Specifically, a time-domain transient analysis is carried out to 

obtain the output harmonic amplitudes for an excitation at a given fundamental frequency. (Note 

that a harmonic-balance-based circuit simulator can also be used to realize a frequency-domain 

characterization [43].) A first-order approximation is employed to deduce the effective stimulus 

needed for the network. The re-radiated power at each harmonic can be found by evaluating the 

power dissipated by the radiation resistances within the equivalent circuit. The harmonic current 

densities on the structure, which are needed for the field pattern calculations, are approximated 

by the linear MoM solver (after properly terminating the structure ports with equivalent 

impedances). 

2.4 Electromagnetic Field Propagator 

Once the current distributions have been obtained with the MPIE-MoM, the radiation properties 

of the RF structure can be characterized by applying a propagation model in accordance with the 

geometry and physical properties of the propagation medium. For a current source located over a 

flat ground surface, a second-order asymptotic approximation can be derived from an exact 

solution in computing the radiated fields; the formulations necessary for this step can be deduced 

from the expressions given in appendix A specialized to a half-space medium. It should be 

mentioned that although the hybrid MoM and asymptotic propagator approach as outlined above 

has been described only for currents located above the air/ground interface, an equally valid and 

conceptually similar set of formulations and procedures exists for the subsurface case. The only 

major deviation results from the fact that when the radiators are submerged in a lossy medium, 

the mode of propagation taken by the fields may be in the form of lateral waves instead of 

geometric-optics contributions and Norton waves (44, 45); hence, the asymptotic propagator 

should be modified accordingly.  

For through-wall environments, the radiation from sources located inside a room is calculated 

with a physical-optics and volumetric polarization current-based approach by following these 

steps: 
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1. The incident waves at the inner wall surfaces are determined by the half-space asymptotic 

method discussed above. 

2. The incident waves—approximated as plane waves—are decomposed into transverse 

electric (TE) and transverse magnetic (TM) modes. By treating the walls as standard two-

layer dielectric structures, the modal fields inside the walls are then estimated with the 

plane-wave transmission coefficients of the media. 

3. The polarization currents for replacing the walls are derived from the volumetric 

equivalence principle as 

      rEirJ wrop


1  ; (14) 

where  rEw


 is the electric field inside the wall and εr is the complex relative dielectric 

constant of the wall material. 

4. Subsequently, by using the half-space asymptotic propagator, the signal outside the room is 

found by summing the radiation from the wall polarization currents and the direct radiation 

due to the RF structure in the absence of the room: 

           
strucureRF

shs

wall

phstotal rdrJrrGrdrJrrGrE
 

''',    ''',


, (15) 

where  ',rrGhs


 is the half-space dyadic Green’s function from appendix A. 

The advantages of the outlined semi-analytic approach are that it is computationally faster and 

more efficient than an exact full-wave method, and it has the ability to incorporate surface-wave 

contributions into the solution. The shortcoming is that the technique only provides an 

approximate solution: only the first-order wall reflection/scattering effects are included in the 

solution. (Note that multiple reflections within the walls are taken into account for the calculation 

of the fields in step 2.) To improve the accuracy of the solver, an iterative physical-optics routine 

can be used to include shadowing and higher-order effects. 

3. Numerical Examples: Applications of the Hybrid Solver 

3.1 Circuit-Component-Loaded Scatterer in Half-space Environment 

As most RF transceivers contain an antenna and a filter element at their front-ends, the structure 

in figure 4 is chosen for illustrative purposes in this section. The filter is a microstrip dual-band 

bandpass filter with operational bands at ~900 MHz and ~2000 MHz. The dual-band topology 

results from the use of the combination of a broadband shunt stub bandpass filter and an open-

stub bandstop filter. The broadband bandpass and bandstop filters basically composed of 

approximately quarter-wavelength long stubs spaced by quarter-wavelength transmission line 
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sections. Separately, the two filters can be translated into transmission line-based structures by 

applying Richard’s transformation to their respective lumped-element-based, low-

pass/bandpass/bandstop prototypes. The antenna—connected to the microstrip filter and printed 

on the other side of the two-layer substrate—is a dual-band, slot-loaded microstrip circular patch, 

with the feeding point at an off-center position. A shorting connection is added at the center to 

reduce the size of the patch. Essentially, the patch behaves as a quarter-wave radiator, and the 

fundamental mode of the circular cavity provides the resonance at the lower frequency band, 

whereas the slot supplies the resonance at the higher frequency band. (Note that dual-band 

performance for the center-shorted circular cavity can also be established without the slot. 

However, it is seen in the initial design that the second resonance frequency of the cavity is 

higher than predicted. The presence of the slot enables the generation of the needed response at 

~1900–2000 MHz while maintaining a compact geometry. Consequently, the second resonance 

of the cavity is affected by the slot, but the first resonance is not.) To introduce a nonlinear 

element into the structure, a varactor is added to the antenna, providing capacitive tuning 

capability. The effective capacitance of the varactor as a function of the DC bias voltage is 

shown in figure 5. Simulations of the filter and the antenna are carried out using the linear MoM 

approach from section 2—assuming infinite, layered substrates. The S-parameters of the 

components are shown in figures 6 and 7. 
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Figure 4.  Antenna and filter for RF front-end:  (a) top view; (b) bottom view; 

and (c) side view. εr1 = εr2 = 4.5 (tanδ ≈ 0.04); the thickness of 

each substrate is 1.6 mm. The distributed filter has dimensions 

~10.7 cm × 7 cm; the radius of the circular patch antenna is 1.79 cm, 

and the length of the slot is 1.14 cm.  

 
 

(a) 

 

 

 
 

(b) 
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Figure 5.  Effective capacitance of varactor used in the setup shown in 

figure 4 as function of DC bias voltage. 

 

Figure 6.  |S11| for the dual-band, slot-loaded circular patch antenna as 

function of frequency and varactor capacitance. 
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Figure 7.  S-parameters for microstrip dual-band bandpass filter as  

function of frequency. 

The scattering from the RF structure in figure 4 is calculated with the hybrid approach put forth 

in section 2. Note that for the analysis that follows, it is assumed that the filter input has been 

terminated with a 50 Ω load and the varactor is biased at 0 V. The structure is placed at 10 cm 

below the ground surface (the ground has relative dielectric constant εr’ = 4 and conductivity 

σd = 10 mS/m). The excitation is provided by a vertical electric dipole—located 10 m from the 

scatterer at a 2-m height—transmitting a monochromatic wave with fo = 840 MHz. Figure 8 

shows the backscattered responses of the scatterer at the fundamental and the second harmonic 

for two levels of transmitted power—that is, for PTX = 100 W and 1000 W. The received power 

at the receiver is estimated by first propagating the fields from the scatterer using the asymptotic 

solver and then calculating the power intercepted by a polarization-matched receiving antenna 

with 0 dB gain. The near-quadratic dependence of the scattered power at 2fo on the transmitted 

power is evident. The instability of the time-domain SPICE solver prevents the responses at the 

higher-order harmonics to be derived here; however, note that an accurate spectrum 

characterization may be found using a harmonic-balance-based circuit simulator. Figure 9 shows 

the variation of the scattered fields as a function of the azimuth angle. 
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Figure 8.  Backscattered response of scatterer in figure 4 at fundamental and second harmonic  

for two levels of transmitted power. The noise floor (kT) shown is at –173.8 dBm/Hz. 

 

Figure 9.  Variation of scattered electric field components as  

a function of azimuth angle. 

To investigate the decay of the signal as a function of sensing distance, the backscattered 

responses are calculated for three different standoff ranges—r = 10 m, 30 m, and 100 m. The 

results in figure 10 demonstrate that the fundamental scattering component falls off as 8 r , 

whereas the second harmonic falls off as 12 r . These behaviors are consistent with theoretical 

results derived using analytical models for the nonlinear circuit response and field propagation. 

As a generalization, in the asymptotic regime, it can be shown that—for the backscattering-based 

sensing scenario in which the interaction points are positioned close to the ground surface—the 

n-th harmonic return approximately depends on the distance as  14  nr . 

 

PTX = 1000 W, PRX = –62.4 dBm  

 PTX = 100 W, PRX = –72.4 dBm  

 

PTX = 1000 W, PRX = –115.3 dBm  

 
PTX = 100 W, PRX = –132.7 dBm  
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Figure 10.  Backscattered response as a function of range: (a) fo and (b) 2fo. 

To see the effects of a more complicated nonlinear load on the scattering response, a low-noise, 

traveling-wave amplifier is connected at the filter input port. The design and circuit layout for the 

amplifier are considered in detail within appendix C; a two-stage topology (figure C-6a) is 

employed for the scattering analysis here. The received power level as a function of frequency—

up to the third harmonic—is displayed in figure 11 for the monochromatic incidence case; the 

simulation parameters are the same as those of figure 8. It should be mentioned that, for this 

example problem, in addition to the amplifier, more components—passive and active, linear and 

nonlinear—can be connected to the RF structure. These components are “transparent” to the 

electromagnetic solver—that is, they are replaced only by equivalent loads in the field analysis, 

 
(a) 

 
(b) 

r = 10 m, PRX = –72.4 dBm  

r = 30 m, PRX = –108.2 dBm  

r = 100 m, PRX = –146.0 dBm  

r = 10 m, PRX = –132.7 dBm  

r = 30 m, PRX = –185.2 dBm  

r = 100 m, PRX = –243.1 dBm  
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for calculating the effective system stimulus and the structure current densities; full circuit 

models of these components, however, can be included in the SPICE solver to characterize the 

circuit spectral response. 

 

Figure 11.  Backscattered responses at fundamental, second, and third harmonics  

of scatterer in figure 4 connected to a traveling-wave amplifier. 

Once the scattered fields from the RF structure are obtained, an imaging algorithm can be used to 

process the return signals for localization. In this work, a time-reversal-based MUSIC (TR-

MUSIC) algorithm is applied to generate the imaging functional. Consider the multi-static 

sensing of a scene with M nonlinear scatterers using an N-element array, the scattered field 

response (at frequency ωs) received at the array due to excitation (at frequency ωi) by the n-th 

transmitter of the array can be shown to be 
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 (16) 

where 
n

r  (n = 1, 2, …, N) is the location of the n-th array element, 
sm

r  (m = 1, 2, …, M) is the 

location of the m-th scatterer,  ,sm s i    is the scattering strength of the m-th scatterer, and 

 , ',G r r  is the Green’s function of the environment. From equation 16, it is seen that the 

scattered field signal subspace is spanned by the Green’s function vectors  1,s sG r  ,  2 ,s sG r  , 

…,  ,sM sG r  —in other words, the scatterer locations are encoded within the subspace 

representation of the received signal (46). In more concise form, after invoking the reciprocity 

 

PRX = –72.4 dBm  

PRX = –114.5 dBm  

PRX = –148.0 dBm  
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principle, the frequency-domain N × N multi-static scattered signal matrix for the array can be 

written as  

        
1

, , , ,
M

T

s i sm s i sm s sm i

m

G r G r      


K , (17) 

in which 
T
 represents the transpose operation, and the matrix element Kpq(ωs, ωi) is the response 

at the p-th array element due to excitation at the q-th array element. In practical applications, 

K(ωs, ωi) is simply taken as the measurement matrix. For image generation, the signal subspace 

of K(ωs, ωi) is computed using a singular value decomposition procedure: 

        , , , ,
H

s i s i s i s i       K U V , (18) 

where U(ωs, ωi) and V(ωs, ωi) are unitary matrices, Λ(ωs, ωi) contains the singular values of 

K(ωs, ωi), and 
H
 denotes the conjugate transpose operation. Noting that the column vectors of 

U(ωs, ωi) supply the eigenvectors  p s i
u  ˆ ,  (p = 1,2, …, N), and assuming that the scattered 

signal subspace is spanned by the eigenvectors corresponding to the first L significant (or non-

zero) eigenvalues and the null subspace is spanned by the remaining eigenvectors corresponding 

to the non-significant (or zero) eigenvalues, an imaging functional can be constructed as 

     
1

2

1

ˆ, , , , ,
N

s i p s i s

p L

O r u G r    



 

 
  
 
 , (19) 

where the Green’s function vector  , sG r   can be computed using numerical or analytical 

methods. The imaging functional in equation 19 peaks at the scatterer locations. In effect, then, 

an image of the scene can be derived using the scattering response at a single receiving 

frequency. To increase the stability of the algorithm, equation 19 can be performed over multiple 

receiving frequencies (e.g., harmonics) or a band of receiving frequencies: 

      
 

1
2

, 1

ˆ, , , , , ,  
s i

N

i p s i s s

p L

O r u G r
 

    



  

 
    

 
  , (20) 

in which Ω denotes the range of available receiving frequencies. Equations 19 and 20 can also be 

generalized to accommodate scenarios in which multiple excitation frequencies (multi-ωi) are 

utilized. (Note that TR-MUSIC based on the conventional, or linear, scattering response is 

derived by setting ωs = ωi in equations 16–20.) 

The imaging functional in equation 19 is employed for imaging the scenario displayed in 

figure 12. The scene consists of the circuit-component-loaded scatterer from figure 4 buried in 

the ground, along with two (linear) clutter objects. The sensing array is composed of N = 16 

transceivers distributed over a 2-m wide aperture and the standoff range is ~6.6 m. The harmonic 

multi-static scattered signal matrices of the scene at fo and 2fo are calculated with the hybrid 
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solver.  , sG r  in equation 19 is calculated with the formulations in appendix A (or reference 

24). The images at the two frequencies are included in figure 12. Note that the target is 

accurately localized in both images, but the clutter signal components do not show up in the 

image at 2fo. 

 

Figure 12.  Imaging results for a buried target scenario: (a) Scene containing target and clutter, (b) image 

generated using scattering response at fo = 840 MHz (both the target and clutter are imaged), and  

(c) image generated using scattering response at 2fo = 1680 MHz (only the target is captured). 

3.2 Circuit-Component-Loaded Scatterer in Room Environment 

To investigate the response of a circuit-component-loaded scatterer for through-wall sensing 

applications, the RF structure from section 3.1 is placed in the room environment shown in 
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figure 2. In this example, the walls, ground, and roof (not shown in figure 2) are homogenous 

media with εr’ = 6 and σd = 30 mS/m. Note that as before, the filter input has been terminated 

with a 50 Ω load and the varactor is biased at 0 V. The RF structure is placed at 1 m above the 

ground; the excitation is provided by a vertical electric dipole located outside the room at a 

height of 1 m, transmitting at fo = 840 MHz, with PTX = 100 W; and a receiving antenna (co-

located with the transmitter) with 0 dB gain is assumed. The hybrid solver outlined in section 2 is 

applied for deriving the backscattered responses at fo and 2fo. To calculate the initial incident 

field on the RF structure, the reciprocity principle is exploited: the locations of the transmitter 

and observation point are interchanged and then the fields are propagated with the physical-

optics and volumetric polarization current-based approach from section 2.4. Figure13 shows the 

backscattered responses of the scatterer at the fundamental and the second harmonic. The bistatic 

scattering pattern as a function of azimuth angle is shown in figure 14. 
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Figure 13.  Backscattered response of scenario shown in figure 2: (a) without  

and (b) with circuit-component-loaded scatterer in room. 

 
(a) 

 
(b) 

PRX = –31.1 dBm  

PRX = –138.7 dBm  

PRX = –31.1 dBm  
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Figure 14.  Backscattered response at fundamental and second  

harmonic as function of azimuth angle for scenario  

in figure 2. 

In order to verify the accuracy of the field propagator in the presence of a wall, simulation results 

are compared with measurement data obtained by Dagefu and Sarabandi (47). The wall is solid 

concrete with εr’ = 4 and σd = 20 mS/m and has dimensions 2.56 m × 1.56 m × 0.09 m. Two 

setups are considered. In the first case (figure 15a), the transmitter is located 1.74 m from the 

wall at a height of 0.87 m; the signal strength along an observation line 0.91 m from the wall at 

0.79 m height is recorded. In the second case (figure 16a), the transmitter is located 1.74 m from 

the wall at a height of 0.24 m; the signal strength along an observation line perpendicular to the 

wall at 0.20 m height is recorded. In this example, for the electromagnetic simulations, fo =  

2 GHz. Note that the measurement scenario only considers the linear propagation effects at the 

fundamental frequency of interest. Figures 15b and 16b show that there is good agreement 

between the analytically derived results and the measured data. 
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(a) 

 
(b) 

Figure 15. Simulated vs. measured responses for propagation in presence of a wall. 
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(a) 

 
(b) 

Figure 16.  Simulated vs. measured responses for propagation in presence of a wall. 

4. Conclusions 

To study the radio harmonic scattering responses of circuit-component-loaded objects, a hybrid 

electromagnetic/circuit solver is developed in this work. The proposed numerical analysis 

approach exploits a combination of 3-D electromagnetic simulations (based on full-wave and 

asymptotic techniques) in the propagation and RF component domains and SPICE simulations in 

the circuit domain. In sum, a systematic strategy—one which is capable of tracking the signal 

interactions from the transmitter terminal to the receiver terminal—is established for attaining 

generalized solutions of the multiscale harmonic scattering problem. This terminal-to-terminal 

(or end-to-end) solver has been applied to two common radar sensing problems of interest. In 

particular, considered herein in detail are the linear and nonlinear scattering effects from an RF 

circuit-loaded object placed in either near-ground or through-wall settings. The scattering 

responses as functions of excitation power, sensing range, and azimuth angle are examined, and 
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the localization, or imaging, of the scatterer using both the linear and the nonlinear returns has 

also been investigated. Through the theoretical developments and illustrative examples put forth, 

it is demonstrated that the proposed hybrid solver—though not completely full-wave-based— 

establishes a practical and computationally efficient solution process for characterizing harmonic 

scattering in complex environments. 
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Appendix A.  Higher-Order Asymptotic Evaluation of Near-Earth Wave 

Propagation Characteristics of Electric Current Sources 

Analytical formulations are derived for calculating the electric fields of a short dipole of arbitrary 

orientation situated above a finitely conducting ground plane in the presence of a dielectric layer. 

The discussion presented below is originally from the work by Liao (24). Note that specialized 

results for the half-space medium can be reached by, for example, setting the dielectric properties 

of the dielectric layer to those of air (or free space).  

There are three primary configurations of interest, as a result of different combinations of the 

locations of the electric dipole and observation point. The dipole is assumed to be located on the 

z-axis with current moment vector )ˆˆˆ( zlylxlIlI zyxoo 


, and the observation point—identified 

with the usual cylindrical coordinates—is at (ρ, , z). The xy-plane is aligned with the top of the 

dielectric layer, itself has thickness d. In the type of propagation problems considered here, for 

analysis restricted to the far field, it can be assumed that the magnitudes of z’, z, and d are much 

smaller than that of ρ—the radial distance between the dipole and the observation point. Also 

note that primed quantities are associated with the source, and the exp(-iωt) convention is 

assumed and suppressed in all the formulations. 

A-1. Case 1 (z’ > 0 and z > 0) 

Consider the simple case when the source and observation points are both located in the upper 

layer (air) of a one-layer medium, the total electric field for a vertical dipole can be written as 
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Specifically, at grazing angle (z’ << ρ and z << ρ), each component of the field can be expanded 

as follows: 
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The first term in the brackets is the direct field; the second term is the geometrical-optics 

reflection field; and the rest of the terms account for higher-order scattered fields—where the Cs 

denote unknown factors. Since incidence is near grazing angle, it is easy to show that RTM ≈ –1, 

(1−RTM) ≈ 2, whereas (1+RTM) is a small quantity proportional to 1/ρ. For the z-component of the 
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field, it can be seen that the cancellation of the direct and geometrical-optics reflection term 

generates a 1/ρ
2
 resultant—which is of the same order as the next term in the expansion. 

Likewise, for the x and y components, the sum of the direct and geometrical-optics reflection 

also produces a term that is of the same order as the next higher-order term. Similar analysis can 

be applied to a horizontal dipole. Thus, when the source and observation points are close to the 

interface (incidence at grazing angle), it is apparent that an accurate description of the field 

components necessitates the derivation of the higher-order term that comes after the geometrical-

optics reflection term. 

The complete evaluation of the field quantities begins with the twofold integral form of the 

dyadic Green’s function.  A change of variable is applied to obtain the integration in terms of kρ 

and Bessel functions. In integral form, the resulting expressions—for which exact closed-form 

solutions do not exist—of the x, y, and z components of the scattered field are given in 

appendix B. Since numerical computation of these expressions is slow and formidable due to the 

presence of singularities and the highly oscillatory behavior of the Bessel function at large 

distance ρ, approximate asymptotic solutions are sought. In a standard procedure, Hankel’s 

functions of the first and second kind are used in extending the limits of integration to negative 

and positive infinity (in kρ-plane). By transforming the integration over to the complex w-plane 

by the change of variable kρ = ko sin w, and then substituting the asymptotic form of the Hankel’s 

function for large arguments, the integrand can be written in the following form—to which the 

standard method of steepest descents can be applied: 
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where subscripts i, j = x, y, or z and q(w) = ikoR cos(w-ws). The saddle point at w = ws is defined 

by q’(ws) = 0; therefore      
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After some manipulations and following the procedure of saddle point integration provided by 

Felsen and Marcuvitz (48), the j component of the saddle point contribution up to second order 

for a dipole pointed in the i direction can be written as 
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where the two terms represent the first and second saddle point expansion terms. The first saddle 

point expansion term is the geometrical-optics reflection term and the second expansion term can 

be thought as a correction term that becomes dominant when the source and observation points 

are close to the interface. This correction term is also commonly known as the Norton wave (49). 

After some lengthy algebraic manipulations, expressions for  fij(w) of (A-9) can be shown to be 

the following: 
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The mixed reflection coefficient, which is required for an x or y-directed dipole, is defined as 
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The TE and TM reflection coefficients are of the standard form: 
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The appearance of branch points at 
1

1sin rbw   entails the use of a two-sheeted Riemann 

surface in representing the w-plane; in order to satisfy the radiation condition, the path of 

integration of (A-5) is restricted to lie on the upper sheet ( 0sinIm  w ). The branch cut 

defined by 
1

1sin rbw   may be crossed by the steepest descent path and its contribution to the 

integral can be included by adding the following to the saddle point contribution (48):  
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It can be readily verified (48, 50) that the poles of the integrand in equation A-5 are not 

intercepted as the original integration path deforms to the steepest descent path. Depending on 

the permittivity of the lower medium (εr1), these poles (the zeros of the denominator of the 

reflection coefficients in equations A-18 and A-19) may move into the vicinity of the saddle 

point; thus, the poles may come into effect indirectly and must be taken into account by carrying 

out a modified saddle point integration method. Simulation results, however, show that the 

ordinary saddle point integration as used here is sufficient for predicting the field contributions in 

the far field. The total field is then the sum of the direct, saddle point, and branch cut 

contributions: 
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where θb = Re(wb) – cos
–1

sech[Im(wb)], and U(·) is the Heaviside step function. Calculation of 

equation A-20 can be quite involved, but note that the branch cut contribution decays 

exponentially with ρ since the wave number k1 is complex; therefore, at large ρ, the branch cut 

contribution can be considered as negligible.  

For a two-layer medium, to account for higher-order reflections that are transmitted into and then 

emerging from the dielectric layer, the total reflection coefficient is modified as follows (51): 
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Using the relations 
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Equation A-22 can be re-written as 

 .
1

)(
2

1

2
1

sin21201

sin21201

wdki

PP

wdki

PP

P
ro

ro

eRR

eRR
wR














  (A-24) 

The subscribe “P” is a place holder for the polarization—either TE or TM. The saddle point 

contribution for each higher-order reflection (u = 1, 2, …∞) in the summation series of 

equation A-22 can be evaluated by using equation A-9 after replacing the reflection coefficient 

term in fij(w) with wudki

P

u

P

u

PP
roeTRRT

2
1 sin2101101201 )()(
  . Note that the higher-order reflections lead to 

higher-order poles for the terms in the summation series of equation A-22. Although they are still 

located outside of the steepest descent path, these poles are close enough that—at higher 

orders—they demand a more refined saddle point integration method even when ρ is relatively 

large. In order to circumvent this difficulty, calculations are made by following the normal mode 
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approach in which the total aggregate reflection coefficient in equation A-24 is inserted into 

equations A-10–A-16 as a whole rather than as individuals in a series. This approach leads to 

satisfactory results in the far field even if we are ignoring the pole contributions—which are now 

supplied by the zeros of the denominator in equation A-24 and must be located through 

numerical methods before their contributions can be included using a standard technique (48). 

These pole contributions, depending on their locations on the complex plane, represent either 

distinct surface-wave modes or leaky modes—both of which become less significant as the 

distance between source and observation points increases (48, 52). Also note that in the two-

layer case there are branch points only at 
2

1sin rbw   since the expression in equation A-24 

can be shown to be an even function of wr

2

1 sin . The branch point that can be intercepted is at 

2

1sin rbw  , but since medium 2 (the ground layer) is highly lossy, the branch cut contribution 

falls off asymptotically according to ~ 2ik
e  and, hence, rapidly becomes much smaller than the 

algebraically decaying saddle point contribution. 

A-2. Case 2 (-d < z’ < 0 and z > 0) 

Exact formulations for this case have been derived and can be found in appendix B. Proceeding 

through the same procedure as before, the method of steepest descents is employed in obtaining 

the integral after transforming the integration to the w-plane. Multiple reflections occurring 

within the dielectric layer can be accommodated by defining the total transmission coefficient as 

the following:  

 
wdki

PP

Pwudkiu

u

PPP

up

P
ro

ro

eRR

T
eRRTwT

2
1

2
1

sin21201

10
sin2

0

121010

1

)()(





 

 


  (A-25) 

and  
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The definition of equation A-26 differs from that of equation A-25 in that the former expression 

applies to waves containing an initial bounce off the dielectric layer/ground interface. It can be 

shown that the transmitted field Eij for each order u can be written as 

 








i

i

wq

uij

o

iooo
uij dwewf

ik

lIk
zE

2

2

)(

,

3

,  )(  
2

16
),,(






  (A-27) 

where 
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and the saddle point can be approximately defined by 
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The set of  fij,u(w) for an arbitrary oriented dipole can be shown to take the following forms: 
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in which 
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The designations “up” and “down” differentiate waves that are initially propagating upward and 

downward from the source. The mixed transmission coefficients have been written in the 

following form: 
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In the formulations above, up

uPT ,
 and down

uPT ,
 are the individual terms in the infinite series of equations 

A-25 and A-26, respectively. Instead of computing each order of transmission separately, the 

saddle point evaluation of equation A-27 can be carried out using equation A-9 as before by 

means of the normal mode approach—in which now the aggregate transmission coefficients in 

equations A-25 and A-26 are substituted into fij(w) as one term. The difficulty mainly lies in 

taking the double derivative of fij(w), but this can be overcome with the help of a symbolic math 

software. When the source and observation points are located in the vicinity of the interface, it is 

seen that both the first and second term in the saddle point expansion fall off as 1/ρ
2
; thus, as in 

Case 1, both expansion terms are necessary for accurate representation of the total field.   

It is seen that the sign of the term wr

2

1 sin  has no effect on the final result in computing the 

integral in equation A-27; therefore, once again, the function fij(w) is an even function of 

wr

2

1 sin  and the only branch points on the complex w-plane are attributed to the term 

wr

2

2 sin . (As a matter of fact, for general stratified media problems, in the normal mode 

approach, the branch points on the kρ plane are supplied only by the first and last layer (53). The 

branch points of the first layer can be eliminated—as it has been done here—by translating the 

calculation onto the w-plane after the change of variable kρ = ko sin w. Thus, on the w-plane, the 

only branch points remaining are due to the last layer in the stratification.) Similar to case 1, 

calculations are much simplified by ignoring contributions from the branch cut and the poles 

(which are provided by the zeros of the denominator of equations A-25 and A-26). In the far 

field, this claim is justified since the saddle point contribution becomes the only dominant field 

component. 

A-3. Case 3 (-d < z’ < 0 and -d < z < 0) 

As it has been shown in reference 45, when both the source and observation points are located 

inside medium 2, the direct and saddle point contributions decay exponentially as a function of 

the radial distance ρ since their propagation takes place in a lossy medium. The dominant 

contribution to the total field, as it turns out, comes from a branch cut contribution. Although a 

modal analysis can be used, a ray tracing approach provides a more insightful interpretation for 

this case. In the ray tracing approach, the effective reflection coefficient is expanded as a series 

before asymptotic evaluation is carried out separately for each term. In such an approach, both 

medium 1 and medium 2 would furnish branch cut contributions on the w-plane since now—for 

each individual order of reflection—the integrand in the field integral is no longer an even 

function of wr

2

1 sin . Discarding the branch cut contribution arising from the branch point at 

2

1sin rbw   for the reason mentioned earlier, the only relevant and significant contribution, in 

the far field, comes from the branch cut contribution due to the branch point at 
1

1sin rbw  . 

This branch cut contribution, which now no longer undergoes exponential decay, can be 

interpreted as a wave from the source that radiates upward to the dielectric/air interface at critical 

angle and then propagates along the interface (in air) before reaching the observation point at 

critical angle again. Since the majority of the propagation takes place in air, this field 
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component—which has been labeled as the “lateral” wave—does not suffer the large path loss 

experienced by the direct and saddle point contributions. Through standard branch cut 

integration techniques, the three lowest orders of lateral waves have been derived in reference 45 

and are expressed in matrix form as the following (z’ > z): 
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 (A-42) 

where A and R are symmetric dyads defined in reference 45. The first term in equation A-42 

represents the direct lateral wave contribution; the second term is the contribution of the lateral 

wave generated from the image of the source in the ground plane; and the third term is the 

contribution of the direct lateral wave that has been reflected from the ground plane before 

reaching the observation point. It is seen that the lateral waves, and hence the total field, 

decreases as 1/ρ
2
—which is the same asymptotic behavior observed for the first two cases. For 

further details on the derivation and verification of equation A-42, the reader is referred to  

reference 45. 

Although the transmitter has been restricted to an electric dipole throughout this work, extension 

to an arbitrary radiating source can be made by noting that the asymptotic form of the Green’s 

function for each of the three cases discussed is related to the derived expressions for the field 

components by a simple constant: 
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Therefore, once the current distribution of an arbitrary source is known, an approximation to the 

far-field pattern can be easily computed. Also, upon application of the reciprocity principle, it is 

straightforward to verify that 

 TrrGrrG ),'()',(


  (A-44) 

where the superscript “T” indicates the transpose operation. Simply by using the relation stated 

in equation A-44, the formulations can be extended to other standard configurations not 

explicitly treated above—for example, the dipole is located in air while the observation point is 

located inside the dielectric layer.  
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A comparison of the asymptotic solution with the exact solution is shown in figures A-1 and  

A-2—for a half-space radiation problem. 

 
(a) 

 
(b) 

Figure A-1.  (a) Magnitude and (b) phase of the electric fields of a horizontal  

electric dipole as a function of range. The dipole is located on the  

z-axis at a 2-m height above the ground and the observation point is  

at a 1.7-m height along a radial line at ϕ = 30°. Ground properties:  

εr’ = 4, σd = 10 mS/m, and f = 300 MHz. 
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(a) 

 
(b) 

Figure A-2.  (a) Magnitude and (b) phase of the electric fields of a  

horizontal electric dipole as a function of range. The dipole  

is buried in the ground at a 10-cm depth and the observation  

point is at a 1.7-m height along a radial line at ϕ = 30°. Ground  

properties: εr’ = 4, σd = 10 mS/m, and f = 300 MHz. 
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Appendix B.  Sommerfeld Integrals for Electric Current Sources 

Exact integral representations of the radiation from an electric dipole located in the presence of a 

two-layer infinite medium are presented below. The details of the derivation can be found in the 

work by Liao (24). 

B-1. Integral Solutions for Case 1 (z’ > 0 and z > 0) 

Exact expressions for the electric field of a dipole radiating in the presence of a two-layer 

medium are derived from the dyadic Green’s function. If the arbitrarily oriented dipole is located 

on the z-axis at (0, 0, z’) with the current moment vector )ˆˆˆ( zlylxlIlI zyxoo 


, it can be shown 

that—for Case 1—the general equation for the scattered electric field at observation point (ρ, , 

z) with z’ > z can be written as 
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where the function in the integrand is dependent upon the dipole orientation and the field 

component of interest (x, y, or z): 
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The total reflection coefficient is given by 
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and the mixed reflection coefficient is 
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where the simple reflection coefficients for a wave going from layer m to layer n are the 

following: 
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The wavenumber is represented by ku (u = 0, 1, or 2) and 
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The direct field must be added to the scattered field to obtain the total field. If z’ < z, the relation 

in equation A-44 should be applied. 

B-2. Integral Solutions for Case 2 (-d < z’ < 0 and z > 0) 

When the dipole is inside the dielectric layer and the observation point is in air, the derivation for 

the total field is more complicated but is not much different from that of the first case. Simple 

manipulations of the dyadic Green’s function give the transmitted field as  
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where the set of  fij(kρ) functions can be shown to be  
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The various transmission coefficients are defined below: 

 ,
)()(

)(
2

1 o

oz

up

TM

z

up

TEup

k

kkT

k

kT
kT



 
 (B-22) 

 ,
)()(

)(
2

1 o

oz

down

TM

z

down

TEdown

k

kkT

k

kT
kT



 
 (B-23) 

 ,
1

)(
1

1

21201

10

0

2121010

dki

PP

P

u

udki

PPP

up

P
z

z

eRR

T
eRRTT


 





 (B-24) 

 .
1

)(
1

1

21201

1012

0

212101012

dki

PP

PP

u

udki

PPPP

down

P
z

z

eRR

TR
eRRTRT


 





 (B-25) 



 

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 



 

45 

Appendix C.  Traveling-Wave Amplifier Design 

Detailed procedure for the design of the metal semiconductor field effect transistor (MESFET) 

distributed amplifier employed in the simulation example of section 3.1 is outlined. First, a 

simplified small-signal model is derived, then preliminary designs are achieved by following the 

guidelines reported by Beyer et al. (54).  From these preliminary designs, it is shown that the 

optimum amplifier should be a two-stage network (n = 2).    

The amplifier is based on the TGF-4350EPU transistor from TriQuint. In a standard procedure, 

the small-signal characteristics of the device must be obtained at the beginning of the design 

process. The S-parameters of the transistor are calculated using the full small-signal model 

(figure C-1) provided by TriQuint. 

 

Figure C-1.  TriQuint small-signal model for transistor. 

Next, a simplified small-signal model for the transistor is derived using a circuit simulator and is 

shown in figure C-2. 
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Figure C-2.  Simulation with simplified small-signal model. 

The S-parameters of the simplified model are compared to those of the original complete model 

in figure C-3. It can be seen that there is a very good match for S11 and S21; there is a poor match 

for S22 since the original model contains parasitics that cannot be included in the simplified 

model; also note that the simplified model is unilateral. 
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Figure C-3.  Comparison between full small-signal model (blue lines) and simplified small-signal model (red 

lines). 

Using the values of the components in the simplified model, the design procedure outlined by 

Beyer et al. is followed. The initial design curves are plotted in figure C-4. For a 50 Ω design, the 

cutoff frequency can be calculated with the following relations (54): 
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Since Cgs is fixed, fc must be equal to 10.55 GHz. It is easily seen that, to equalize the impedance 

of the gate and drain lines, an additional capacitance, Cp = 0.5784 pF, must be added to the drain. 

The required inductances on the gate and drain lines are then calculated as (54) 
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As it is done in reference 54, the image terminations are realized by using m-derived filter half 

sections (55) at both ends of the lines. The form of the termination is shown in figure C-5. The 

values of the inductors and capacitor are 
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 pF
mC

C
gs

m 1810.0
2

 ; (C-5) 

where, as shown in reference 55, the optimum value for m is 0.6. 
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Figure C-4.  Design curves. 
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Figure C-5.  Line termination. 

Once the small-signal model of the device and the values of the different components (Lg, Ld, Cp, 

Lm, Lm2, Cm) in the amplifier network are defined, the preliminary design is carried out in the 

circuit simulator.  An example of the preliminary design using lumped-elements is shown in 

figure C-6 (for n = 2). The schematics of the distributed designs—for n = 1, 2, 3, 4—are also 

derived (figure C-7 shows the design for n = 2). In each of these preliminary distributed designs, 

inductors are replaced by short transmission lines with parameters Zo = 100 Ω and L = Zol/λgf; 

and lumped-element capacitors are still used (but can be replaced with MIM capacitors later in 

the design process). Bias is done with an ideal DC-feed inductor and DC-block capacitors are 

added. Also, note that the actual (not simplified) small-signal model is used for the transistor in 

these designs—all of which are over a gallium arsenide (GaAs) substrate. After making the 

above changes, the component values of each circuit are tuned to maximize the gain while 

keeping its variation less than 1 dB over the entire bandwidth. It is seen that a bandwidth of 

10 GHz can be realized with a design using n = 2. With fc fixed, a larger number of devices 

increases the gain but reduces the bandwidth, while a smaller number of devices leads to a 

smaller gain but wider bandwidth—this is consistent with the trends displayed in figure C-4. 

Consequently, from a survey of these preliminary designs, with the constraint that the bandwidth 

equals 10 GHz, it is concluded that the optimum number of devices is n = 2.  
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(a) 

 

Component Variable Value 

LL 1.0292 

LL2 0.5146 

Cp 0.1045 

Lm1 0.2460 

Lm2 0.2542 

Cm 0.0880 

(b) 
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(c) 

Figure C-6.  (a) An example layout for n = 2 using lumped-elements, (b) component values, and (c) simulation 

results of lumped-element-based design. 
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(a) 

 

Component Variable Value 

swid 0.2464 

sL 221.4 

bc 92.7360 

bL 722.9124 

angle 70 

bwid 0.0202 

Cm 0.1433 

oCm 0.1810 

Cp 0.1477 

 

Component Variable Value 

widm 0.2464 

lengm 0.1426 

lengm2 0.0189 

owidm 0.2464 

olengm 0.5118 
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wid 0.2464 

leng 1.7743 

leng2 0.8870 

(b) 
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(c) 

Figure C-7.  Schematic and gain simulation for preliminary design with n = 2. 
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List of Symbols, Abbreviations, and Acronyms 

3-D three-dimensional 

FDTD finite-difference time-domain  

MESFET metal semiconductor field effect transistor  

MoM method-of-moments  

MPIE mixed potential integral equation  

PCBs printed circuit boards  

RF radio frequency  

SPICE Simulation Program with Integrated Circuit Emphasis  

TE transverse electric  

TM transverse magnetic  
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